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Abstract

In this paper, we derive the formula for finding the value of sum of (m — 1) time partial
sums of the reciprocal of produet of polynomial factorials in the field of finite difference
methods. Suitable examples are provided to illustrate the main results.
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1. Introduction

The Fractional Calculus is currently a very important research field in several different
areas: physics (including classical and quantum mechanics and thermodynamics), chemistry,
biology, economics and control theory [7, 12, 13, 14, 15]. In 1989, K.S.Miller and Ross [11]
introduced the discrete analogue of the Riemann-Liouville fractional derivative and proved
some properties of the fractional difference operator. The main definition of fractional

difference equation (as domne in [11]) is the v*" fractional sum of f(t) by

AT = r(ly) Z;: Tt —Fs,(t;_(j)— /) ()

where v > 0. On the other hand fractional & sum of order m > 1 ((A, ™ f)(t), Defini-

tion 2.8 of [10]) is very useful to derive many interesting results in a different way in finite

h partial sums on nth powers of arithmetic,

difference methods such as the sum of the m'
arithmetic-geometric progressions and products of m consecutive terms of arithmetic pro-
gression using A, "u(k) [9,10]. During the last decades several fractional sums for various
functions have been investigated by numerous mathematicians (cf. e.g, [2,3,5,6] and the
bibliography quoted there).

In the existing literature, there are several series in which certain series hawve direct
formula to find its value and some series have no direct formula. For example, Efx:l nl—p and
its partial sums etc., and the m-series defined below.

Let £ > 0 and u(k) be real valued function on [0, 0c) and u(k) = 0 for all k € (—o0,0).
Then, for m € N (1), the m-series of w(k) with respect to £ is defined as below:
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. k
1 — series; uyp(k) =ulk —£€) +ulk —20) +...+u|k— 7 ),

k
2 — series; ?.I-Q(,EJ(.IQ) = ul(g}(k' — f) + ultgj(k — 2£) T Uy (k — [E] f) .

and in general, m— series;

k
Um (€)(k) = tim—1)(e)(k — €) + Um_1)e) (kK — 20) + ... + Uim—_1)(¢) (k - [f] f) :

If we take u(k),u(k —€),--- ,u(k — [%] ¢) are the amounts of infection of disease at the
time k. k—¢,--- [k — [%] ¢ respectively in living things, then um(g}(k + mf) gives the total
amount of infection of the disease for m-generations. In the field of Health Science, it is
necessary to find the exact value of m-series for the proper treatment of medicine.

We find that the m-series of u(k) with respect to ¢ is the numerical solution of the

difference equation

AJ'v(k) = u(k), k € [0,00), £ >0, (2)

and the complete solution of (2) provide the value of the m-series. Hence in this paper, we
derive formula for m-series to product polynomial and polynomial factorials by numerical-
complete solution of the difference equation (2).

2. Preliminaries

Before stating and proving our results, we present some notations, basic definitions and
preliminary results which will be used in the subsequent discussions.

Let [z]= integer part of z, £ € (0,0¢) be fixed real, & = 0 be variable, j = k — [%} £
be starting value for k with respect to ¢, J,,, = {1.2,...,m}, 0(J,) = {&}, ¢ is empty set,
1(Jm) = {{1}.{2}, ---, {m}},

2(Jm) = {{1,2},{1,3}, .-, {1,m}, {2,3}, -, {2,m}, -« ,{m —2,m — 1}}. In general,
t(Jm) is the set of all subsets of size f, arranging in ascending order, from the set J,,,
o(Jm) = Ui~ t(Jm) is the power set of J,,,, 31", f(t) = 0 for m < 1 and ]__[:;2 f(i) =1 for
<L (k) = A7 () ey = A i (k) = A ue i (1= 20+ ) fori =2, .m,
wy (k) = Ay 'u(k) and ug(k) = u(k).

Definition 2.1. [8] For a real valued function u(k), the generalized difference operator

Ay and its inverse on u(k) are respectively defined as

Agu(k) =ulk +€) —u(k), k€ [0,00), £ € (0,00), (3)

and

if Agv(k) = u(k), then v(k) = Ay u(k) + ¢;. (4)

Where C is constant for all & € Ng(j)

ISBN 978-93-82338-91-8 © 2013 Bonfring



International Conference on Mathematical Computer Engineering - ICMCE - 2013 697

In general if a function v(k) satisfies the difference equation (2) then it is called a solution
of the difference equation (2).

Lemma 2.2. [8] If s and S}’ are the Stirling numbers of the first and second kinds
respectively, and }ci;") =k(k—€)(k—2€)---(k—(n— 1)¢f), then

™ (r+1)
(n) _ T PT—T [T n n pn—r g.(7) —1 (V} k
Ky —Esrf kT, K ;SF k) and A7 'Ky CESVA (5)
Lemma 2.3. [§] Let u(k), k € [0,00) be real valued function. Then for k € [£, c0)
(7]
Ay uE)E = ulk —ro). (6)
r=1
Theorem 2.4. [4] If klim_ A;Tu(k) =0for r=1,2,--- ,m and k € [m¥¢, o), then
—rne ("H - 1)(1‘!’1—1}
Ay ™u(k) | = rz:n (=)t ~ u(k—ml+rh). (7)
Corollary 2.5. [4] Let k € [0,00) and klim A, 'u(k) = 0. Then
Atu(B)E =" u(k—+70). (8)
r=1

3. Main Results

In this section , we derive the product of Reciprocal of polynomial factorial and find the
sum of partial sum of finite and infinite series on reciprocal of arithmetic progression by
using the inverse of generalized difference operator.

Theorem 3.1. (Generalized Product Formula)

If nn is positive integer, u;(k), i = 1,2, -- ,n are real valued functions, then

n—2 n—i—2

Ag H'ua(kJ = 1:[ ui(k)Apun (k) + IT II uk+ Owi(k)Apun i1 (k).  (9)

t=0 s=m—t i=1

Proof. From the Definition 2.1, we have

Apluy(Byus(k) - un (k)] = ui(k+ Oua(k 4+ €) - - upn (kb + €) —uy (Bus(k)---un(k).  (10)

J
Adding and subtracting terms ]_[ wi(B)vi(k), 5 =2.3.--- .(n — 1). we obtain

n—1 n—2
Aplur(B)uy(k) - - - un (k)] = J] wa(k)Alun(k) + wn(k + €) T we(k)Arun_1(k)
i=1 i=1
n—3
+un(k -+ f)r"-i"n—l(k -+ F:) H ui(k)‘&é'un—Q(k) -+ '.'_Ln(k’ + E)-un—l(k T E)un—Q(k + 8)
i=1
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n—4
H wi (k) Aty 3(k) + -« +up(k + Oty ((K+ 1) ---uz(k + Ouy (k) Arus(k)
i=1
+utn (b + Oty _y (K +£) - - usz(k + Oua(k + £)Agu,y (k). (11)
The proof follows by (10) and (11).
Example 3.2. In (9), by taking n = 4, u;(k) = mr“ for i = 1,2, 3,4, we have
1 - —¢
£ 1 L .0 ™5 My~
[EII (k+1:6); ] ;]TL (k4 4 b5 0) T T T (R + tp0))

Theorem 3.3. Let m and n be the positive integers. Then,

n—1

Ay [Tk = Huz km—mun(kHZ{Af—luntkwmﬂui(ffn}. (12)

Proof. From Definition 2.1, we have

n—1 n—1
A1 [H w; (k) Agw, ( k)] H u; (k)w, (k) —

Al [z:: _H__ i:[_ u.s(k+f)u=n(k+f)ui(k)u.-n(k)a.guﬂ_a_l(k)} . (13)

(12) follows by substituting u,, (k) = A,w, (k) in (13).

Corollary 3.4. If n is positive integer, then

AT wa) = [T wst) A7 un (k) = ATHAT un (ke + (A [T wile)). (14)

Proof. The proof follows by substituting m = 1 in (12).
Theorem 3.5. If m is positive integer and r,, > (m + 1) + Z 1 ;-'1 then

(rs) n—1
—Im 1 k + tlf L —m 1
AE [H ( {"3} ] H(k T E)E ‘}A (T
(K +tnf); i=1 (k +tnl);

m n—1
. 1 (r:)
+> A ———A, k+t:0), . 15
= { g LG ]} o)
Proof. Proof follows by taking w;(k) = (k + tgf)grf},i = 1,2,---,n—1 and u,(k) =

1 .
W m (12)

Theorem 3.6. If m is positive integer and r,, > (m + 1) + Zz 1 ;-'1 then

[%] n—1 {'rq_ 1
Hr. 1 (k + (t [7'1} —17 1
2 [ (k+ (tn — )¢ )”"”J ] H e S (k + t )™

=1
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+Z{A£_—1; g[H(k+t f)““*-]} (16)

= (k + tnl)g"™
Corollary 3.7. If ¢ € (0,00), then

At (k+ 6.0 (k+ 202 ]
‘ (k+ tsf)gﬁ}

1 (bt )P (k+ 120 2, (k4 t20) ) (ke + t,0)P
50 (k—f+t56)) 5°¢ (k+ts0)”

E+t,0) 0 (k +t,0)2
gﬂg_ll(ﬂ)g(ﬂ)g _ (17)

> (k + t30)
Proof. The proof follows by substituting m =1, n =3, ry =rz =2 and r3 = 6 in (15).
Theorem 3.8. Let k € [0,00) and j = k — [%£] £. Then,

[2]: (k+ (t1 — 7)) (k + (t2 — r)0)?
(6 o
= (k + (ts — r)0)”
L+t Pkt t202 2 [ (k4 1200 (k+ t10))
5 14
50 (k— €+ t50) 5 (k + t30)5
2 [+ k+ 02 ]
—I——Ag ) |j (18)
2 (k+t3f),
Proof. The proof follows from (6) and (17).
Corollary 3.9. Let k € [0,00) and j = k — [%] ¢. Then,
k
[Z?:]( )(k+t1£ rf}é“(k+t2£ r)Y ) (k400 (ki) (D
) (k+tal—re)® TR (ke 264t50)Y (19)
2 —1)" A — . (1) k
+%Zz=l ii?:fLAE [ i=1(k+ ("1 - 1}€—|—tif}€ (k— 2£+313€+z£j‘33] |€+:r'

Proof. The proof follows by substituting m = 2in (16) and (6).
The following example is illustrates Corollary 3.9.

Example 3.10. 1In (19), substituting k =47, =3,j5 = 2,t; = 4,ts = 5,t3 = 6, we get

§ (r — ){.,9 2r)sVe2—2r)” | _ 1 (59)8" (62)5"
(65—2r)L 108 (59)8

=2

+i5r, Sa [Zz (47 + (i —1)2 + 2¢, )“J%} 147 = 0.0165389

50+24) 0

The following example is the illustration of Theorem 3.8.

Example 3.11. 1In (18), substituting k =63, =4, = 3,t; = 3,t; = 4,t3 = 5, we get

Z:15 (75—ar)P(ro—an){®P | _ 1 ()P (79
=] (83—ar)® o 2 (79) "

e (2} rrgy (1) [1:., (2)
+34,7 [ T ] ZA," [ L } — 0.055070622
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n—1

Theorem 3.12. If m is positive integer and 7, > (m+ 1)+ > | 7, then

=) n—1 n—1
(r:) 1 (T2
SO B+ 8+ — 1oy, ] = [ (& +t:0);
r=m Li=1 (k+(tn +7 — 135)?” i—1

—m 1 - — 1 i =}
Ay —JFZ{ﬂet—, H(kJrff)( ]}|k

(k+ tu'f)frn} t—1 (k+ tnf)zgrn}

Proof. The proof follows from (7) and (15).
Corollary 3.13. Ifr, > 2+ Zn '7;, then

o0 n—1 n—1
> [H(k F (47— 1)) . ] = [T (k +t:0){™

=1 Li—1 (k+(tn +7— l}f)érn} i—1

n—1
- 1 (r:) .
- AV k4 t:0) |2
('[?"” — 1)e(k + tnf)gr"_l}) (rn — 1)e(k + t,0){™) [H( Je 1k

i=1
Proof. The proof follows by substituting m = 1 in (20).
Corollary 3.14. Ifr, > 3+ Z;:ll r;, then

ZOO (r 1)(R+t1£+(r 2}8}(1){;‘4_”5_1_{?._2)@13; L
r=2 {k—l—taé’—l—(r 2)?:}[7’ 3072
(k—l—mf)iU(k—HQf}cg —1 (k+tl€)u-’(k+g2_€).gj 1 . [R‘+£+t2£}_ga"
5+ e w | T 3062 | ®
(k—2604ta8); (k—£+tal); (c—ttta)
1 a2 | (ktt1)§) (ktta)® o [httatsn®
—5;: 4, 5 _ LA (ertriat)e®
I3 (k+taf), etat)

Proof. Substituting m = 2 and n = 3 in (20), we obtain

S

r=2

(k+t0:0) (k+10:0)) ., 1 ()
4> AT ——— A [+ 10)] ¢ 5
(rs — D@ 2(k + 120 ST (ke +ta0)f I_I

(22) follows by taking r; = 1,7, = 3 and r3 = 7 in (23).
The following example is illustrate Corollary 35.14.
Example 3.15. 1In (22), taking k= 58,¢ =5,t, =6,t, = 7,t3 = 8, we obtain

(k4 (t, +7 =)0 (k+ (ts +7 — 20|
(k+ (tz + 7 —2)€)5™

i 78+ 53 +5m) 3] 1 (88)(V(03)@)
— (88 + 51)" 750 (28)®)
ot EnPea@ ]| 1 a1 [
: (93)> 150 —¢ —"’—{93)<,)
L A—2 | (88)L"(93) % L oa—2 | @] _

Example 3.16. In (21), by takingn =3, r, = 1,7, = 2 and r3 = 7, we find
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oo (k+t1 b (r—1)0) Y (ot (r—1)g)%

r=1 (k+tal+(r—1)e)"
1 (k)P (k4ta0)P 1 (kb)Y 1 (Rt )Y
5€ (k—f4t£) (%) 208 (k—gqiq0)( 30F (k—p41q0)

ko4t00)SY) 1 (k+f+ia0)iV 1 1

1 _ _ 1
1 (ks (et P

1 1
608 (p_piea0)?)  60L (b_pigqp)l? 10¢£ (k—f+ia8)L")

In particular £k =43, = 2,1 = 2,t2 = 3 and {3 = 4, we ¢btain

s [asten$arien®] |1 an®aag?
r=1 (494_27.};‘3) 10 (49}55)
_ AP 1 @ant) 2 pdY
40 {46}{24) 60 {49)523) . (0] -(49)23J
_3 1 _ 1 @ansPEe® _ 0.000143413867
120 (49)§7 20 (a9)3" '
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