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Abstract

This paper investigates the adaptive control design with feedback input approach for controlling chaotic systems to
ensure global chaos synchronization of chaotic systems, viz. n–scroll Chua circuit. Our theorem on synchronization
for n–scroll Chua circuit is established using Lyapunov stability theory. The adaptive control links the choice of
a Lyapunov function with the design of a controller and guarantees global stabilities performance of strict-feedback
nonlinear systems. The adaptive control method is effective and convenient to synchronize and estimate the parameters
of the chaotic systems mainly this technique gives that the flexibility to construct a control law and estimate the
parameter values. Numerical simulations are also given to illustrate and validate the synchronization results derived
in this paper.
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1. Introduction

Chaos refers to one type of complex dynamical behaviors that possess extreme sensitivity to tiny variations of
initial conditions, bounded trajectories in phase space and fractional topological dimensions. Synchronization research
has been focused on the state observers, where the main applications pertain to the synchronization of nonlinear
oscillators and the use of control laws, which allows to achieve the synchronization between nonlinear oscillators,
with different structures and orders.

The synchronization of chaotic system was first researched by Yamada and Fujisaka [1] with subsequent work
by Pecora and Carroll [2, 3]. The synchronization of chaos is one way of explaining sensitive dependence on initial
conditions. It has been established that the synchronization of two chaotic systems, that identify the tendency of two
or more systems are coupled together to undergo closely related motions. The problem of chaos synchronization is
to design a coupling between the two systems such that the chaotic time evaluation becomes ideal. The output of the
slave system asymptotically follows the output of the master system i.e. the output of the master system controls the
slave system.

The synchronization for chaotic systems has been widespread to the scope, such as generalized synchronization
[4], phase synchronization [5], lag synchronization, projective synchronization [6], generalized projective synchro-
nization [7, 8] and even anti-synchronization. A variety of schemes for ensuring the control and synchronization of
such systems have been demonstrated based on their potential applications in various fields including chaos generator
design, secure communication [9, 10], physical systems [11], and chemical reaction [12], ecological systems [13],
information science [14], energy resource systems [15], ghostburster neurons [16], bi-axial magnet models [17], neu-
ronal models [18, 19], IR epidemic models with impulsive vaccination [20] and predicting the influence of solar wind
to celestial bodies [21], etc. So far a variety of impressive approaches have been proposed for the synchronization
of the chaotic systems such as the OGY method[22], sampled feedback synchronization method, time delay feed-
back method [23], adaptive design method [24–26], sliding mode control method [27], active control method [28],
backstepping control [29, 30] etc.

Adaptive control design is a direct aggregation of a control methodology with some form of a recursive system
identification and the system identification could be aimed to determining the system to be controlled is linear or
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nonlinear systems. The system identification is only the parameters of a fixed type of model that need to be determined
and limiting the parametric system identification and parametric adaptive control. Adaptive control design is studied
and analyzed in theory of unknown but fixed parameter systems.

In this paper, Adaptive control design with feedback input approach is proposed. This approach is a systematic
design approach and guarantees global stability of the n-scroll Chua chaotic circuit. Based on the Lyapunov function,
the adaptive update control is determined to tune the controller gain based on the precalculated feedback control
inputs. We organize this paper as follows. In Section 2, we present the methodology of chaos synchronization by
adaptive control method. In Section 3, we give a description of the chaotic systems discussed in this paper. In Section
4, we demonstrate the chaos synchronization of identical n–scroll Chua systems [31]. In Section 5, we summarize the
results obtained in this paper.

2. Problem Statement and Our Methodology

In general, the two dynamic systems in synchronization are called the master and slave system respectively.
Consider the dynamics of nonlinear systems whose trajectories are having chaotic attractor

ẋ = Ax+ f (x) (1)

wherex(t) ∈ R
n is a state vectors of the system.A is then × n matrix of the system parameters andf : Rn → R

n is
the nonlinear part of the system. Assume that the master system is described as eqn(1) and the slave system which is
coupling to eqn(1). The adaptive slave systems described so far are the special form

ẏ = Ay+ f (y) + u (2)

whereu is the input to the system with parameter estimator ˆαi , i = 1, 2, 3, ..., n and y(t) ∈ R
n is a over all state

vectors of the system including the controller and identifier. If f equals to g, then the systems states are identical
synchronization otherwise that systems states are non identical chaotic synchronization of systems. The chaotic
systems (1) and (2) depends not only on state variables but also on time t and the parameters. The problem is to
analyze the synchronization between two chaotic systems are transform to another problem on how to choose the
control lawui, i = 1, 2, 3, ..., n and the parameter identifier ˆαi , i = 1, 2, 3, ..., n to make thee converge to zero with the
time increasing.

In order to observe the synchronization behavior in master and slave systems, we have introduced the control
functionsui , i = 1, 2, 3, ..., n and the parameter estimator ˆαi , i = 1, 2, 3, ..., n for the purpose of synchronizing the
master and slave systems in spite of a different chaotic systems which is the extreme case of master/ slave mismatch. To
estimate the control functions, we subtract (1) from (2), We define the synchronization error system as the differences
between the slave system(2) and the controlled master system. Let us define the error variables between the slave
system (2) that is to be controlled and the controlling master system(1) as

e= y− x

then the error dynamics is obtained as
ė= Ae+ ( f (y) − f (x)) + u (3)

whereu is the controller to the system with parameter estimator ˆαi . The parameter estimation error is defined as

eαi = αi − α̂i , i = 1, 2, 3, ..., n.

The synchronization error system controls a controlled chaotic system with control inputui , i = 1, 2, 3, ..., nwith
adaptive update laẇ̂αi as a function of the parameter estimator error stateseα1, eα2, eα3, ....., eαn. That means the
systematic adaptive feedbacks so as to stabilize the error dynamics (3),e1, e2, e3, ....., en converge to zero as time t
tends to infinity. This implies that the controllersui , i = 1, 2, 3, ..., n and adaptive update laŵ̇αi should be designed so
that the two chaotic systems can be synchronized. In mathematicallylimt→∞‖e(t)‖ = 0.

Adaptive control design is systamatic and guarantees global stabilities performance of strict-feedback nonlinear
systems. By using the adaptive control design, the chaotic system is stabilized with respect to a Lyapunov functionV,
by the design of parameter estimator control ˆαi and a control input functionui with adaptive update laŵ̇αi .
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The Lyapunov stability approach consists in finding an update law. Lyapunov function technique be methodology.
Consider candidate Lyapunov function as

V(e, eα) = eTP1e+ eT
αP2eα (4)

whereP1 andP2 are positive definite matrix.
The parameters of the master and slave systems are estimate and the states of both systems (1) and (2) are mea-

surable. If we find a controlleru and adaptive update laŵ̇αi such that

V̇(e, eα) = −eTQ1e− eT
αQ2eα (5)

whereQ1 andQ2 are positive definite matrix, thenV : Rn→ R
n is a negative definite function.

Thus by a Lyapunov stability theory [32], the error dynamics (3) is globally exponentially stable and satisfied
for all initial conditionse(0) ∈ R

n. Hence, the states of the master and slave systems are globally and exponentially
synchronized and the adaptive control law is given by

˙̂αi = G(e) + kieαi (6)

whereki is positive constant,e = y− x is the error vector, andG : Rn → R
n is a continuous vector function with the

error as its argument.

3. The System Description

Recently, theoritical design and hardware implementation of different kinds of chaotic oscillators have attracted
increasing attention, aiming real world applications of many chaos based technologies andinformation systems. In
current research interest in creating various complex multi scroll chaotic attractors by using simplified and generic
electrical circuit. Here which we are interested is the n–scroll Chua circuit which is an improved model of chaotic
system introduced by Wallace K. S. Tang et al([31],2001) In fact, it is now obvious that can be derived from simplified
and generic electrical circuit.

3.1. The n–Scroll Chua system
Chua’s system is utilized for the investigation.Thedynamical equation of n–scroll Chua system with sine function([31],

2001) is given by

ẋ1 = α(x2 − f (x1)) (7)

ẋ2 = x1 − x2 + x3

ẋ3 = −βx2

where f (x1) is given by f (x1) =























bπ
2a(x1 − 2ac) if x1 ≥ 2ac

−bsin(πx1
2a + d) if −2ac≤ x1 ≤ 2ac

bπ
2a(x1 + 2ac) if x1 ≤ −2ac

.

The piecewise linear function is only nonlinearity in the system. A sine function is couched to obtain the nonlinearity
needed for generating chaos in Chua system.
Whenα = 10.814, β = 14.0, a = 1.3, b = 0.11, 2-scroll, 3-scroll, 4-scroll and 6-scroll attractors are generated with
c = 1, 2, 3,and 5 respectively, as depicted in Fig. 1(a)–(c). A maximum of six scroll can be observed.

4. Synchronization of identical n–scroll Chua systems via Adaptive Control Design Based on Feedback Control

In this section we apply the adaptive method with novel feedback function for the synchronization of identical
Chua system. The equation for Chua’s system are

ẋ1 = α(x2 − f (x1)) (8)

ẋ2 = x1 − x2 + x3

ẋ3 = −βx2
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Figure 1: (a). Phase orbit of 2–scroll Chua system whenc = 1, (b). Phase orbit of 3–scroll Chua system whenc = 2, (c). Phase orbit of 4–scroll
Chua system whenc = 3,

where f (x1) is given by f (x1) =























bπ
2a(x1 − 2ac) if x1 ≥ 2ac

−bsin(πx1
2a + d) if −2ac≤ x1 ≤ 2ac

bπ
2a(x1 + 2ac) if x1 ≤ −2ac

wherex(t)(i = 1, 2, 3) ∈ R3 is a state vectors of the system and the master system also described by Chua system, the
system dynamics is

ẏ1 = α(y2 − f (y1)) + u1 (9)

ẏ2 = y1 − y2 + y3 + u2

ẏ3 = −βy2 + u3

where f (y1) is given by f (y1) =























bπ
2a(y1 − 2ac) if y1 ≥ 2ac

−bsin(πy1

2a + d) if −2ac≤ y1 ≤ 2ac
bπ
2a(y1 + 2ac) if y1 ≤ −2ac

wherey(t)(i = 1, 2, 3) ∈ R3 is a state vectors of the system. Let us define the error variables between the slave system
(9) that is to be controlled and the controlling master system(8) as

ei = yi − xi , i = 1, 2, 3

Subtract (8) from (7) and using the notation (3)yields

ė1 = αe2 − α[ f (y1) − f (x1)] + u1 (10)

ė2 = e1 − e2 + e3 + u2

ė3 = −βe2 + u3
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we introduce the adaptive control to design the controllerui , i = 1, 2, 3. Whereui , i = 1, 2, 3 are control feedbacks, as
long as these feedbacks stabilize system (19) converge to zero as the time t goes to infinity.

Let us define the adaptive functionu1, u2, u3 as

u1 = −α̂e2 − α[ f (y1) − f (x1)] − k1e1 (11)

u2 = −e1 + e2 − e3 − k2e2

u3 = β̂e2 − k3e3

whereα̂ andβ̂ are estimates ofα andβ respectively andki , (i = 1, 2, 3, 4, 5) are positive constants.
Substituting eqn(11) into eqn(10), then the error dynamics simplify to

ė1 = (α − α̂)e2 − α[ f (y1) − f (x1)] − k1e1

ė2 = −k2e2

ė3 = −(β − β̂)e2 − k3e3 (12)

Let us define the parameter estimation error as

eα = α − α̂

eβ = β − β̂ (13)

ea = a− â

eb = b− b̂

ec = c− ĉ

substituting (13) into (12), the error dynamics is simplified to

ė1 = eαe2 − α[ f (y1) − f (x1)] − k1e1

ė2 = −k2e2

ė3 = −eβe2 − k3e3 (14)

4.1. case 1: when[ f (y) − f (x)] ≥ 2ac:
The Lyapunov stability approach consists in finding an update law for tuning the estimates of the parameters, the

Lyapunov candidate function is

V(e) =
1
2

(e2
1 + e2

2 + e2
3 + e2

α + e2
β + e2

a + e2
b + e2

c) (15)

Differentiating equation(15) along the trajectories (12)and using

ėα = − ˙̂α, ėβ = −
˙̂β, ėa = − ˙̂a, ėb = −

˙̂b, ėc = − ˙̂c

we find that

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 + eα(e1e2 − ˙̂α) + eβ(−e2e3 −

˙̂β) (16)

+ea(− ˙̂a) + eb(
−απ

2a
e2

1 −
˙̂b) + ec(2αbπe1 − ˙̂c)

In equ(16), the parameters are updated by the update law

˙̂α = e1e2 + k4eα
˙̂β = −e2e3 + k5eβ
˙̂a = k6ea (17)
˙̂b =

−απ

2a
e2

1 + k7eb

˙̂c = k8ec
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substituting eqn(17) into eqn(16), then we have

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 − k4e2

α − k5e2
β − k6e2

a − k7e2
b − k8e2

c (18)

which is a negative definite function. Thus by a Lyapunov stability theory [32], the error dynamics (3) is globally
exponentially stable and satisfied for all initial conditionse(0) ∈ R8. Hence, the states of the master and slave systems
are globally and exponentially synchronized. Hence, we obtain the following result.

Theorem 1. The identicaln–scroll Chua’s systems (8) and (9) are globally and exponentially synchronized by using
adaptive parameter update law (17)with the feedback controls (11) and ki , i = 1, 2, 3, ..., 8 are positive constants.

4.2. case 2: when−2ac≤ [ f (y) − f (x)] ≤ 2ac:

The Lyapunov stability approach consists in finding an update law for tuning the estimates of the parameters, the
Lyapunov candidate function is

V(e) =
1
2

(e2
1 + e2

2 + e2
3 + e2

α + e2
β + e2

a + e2
b + e2

c) (19)

Differentiating equation(15) along the trajectories (12)and using

ėα = − ˙̂α, ėβ = −
˙̂β, ėa = − ˙̂a, ėb = −

˙̂b, ėc = − ˙̂c

we find that

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 + eα(e1e2 − ˙̂α) + eβ(−e2e3 −

˙̂β) (20)

+ea(− ˙̂a) + eb(αe1[sin(
πy1

2a
+ d) − sin(

πx1

2a
+ d)] − ˙̂b) + ec(− ˙̂c)

In equ(16), the parameters are updated by the update law

˙̂α = e1e2 + k4eα
˙̂β = −e2e3 + k5eβ
˙̂a = k6ea (21)
˙̂b = αe1[sin(

πy1

2a
+ d) − sin(

πx1

2a
+ d)] + k7eb

˙̂c = k8ec

substituting eqn(17) into eqn(16), then we have

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 − k4e2

α − k5e2
β − k6e2

a − k7e2
b − k8e2

c (22)

which is a negative definite function. Thus by a Lyapunov stability theory [32], the error dynamics (3) is globally
exponentially stable and satisfied for all initial conditionse(0) ∈ R8. Hence, the states of the master and slave systems
are globally and exponentially synchronized. Hence, we obtain the following result.

Theorem 2. The identicaln–scroll Chua’s systems (17) and (18) are globally and exponentially synchronized by using
adaptive parameter update law (21)with the feedback controls (11) and ki , i = 1, 2, 3, ..., 8 are positive constants.

4.3. case 2: when[ f (y) − f (x)] ≤ −2ac:

The Lyapunov stability approach consists in finding an update law for tuning the estimates of the parameters, the
Lyapunov candidate function is

V(e) =
1
2

(e2
1 + e2

2 + e2
3 + e2

α + e2
β + e2

a + e2
b + e2

c) (23)
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Differentiating equation(15) along the trajectories (12)and using

ėα = − ˙̂α, ėβ = −
˙̂
β, ėa = − ˙̂a, ėb = −

˙̂b, ėc = − ˙̂c

we find that

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 + eα(e1e2 − ˙̂α) + eβ(e2e3 −

˙̂β) (24)

+ea(− ˙̂a) + eb(
απ

2a
e2

1 −
˙̂b) + ec(− ˙̂c)

In equ(16), the parameters are updated by the update law

˙̂α = e1e2 + k4eα
˙̂β = e2e3 + k5eβ
˙̂a = k6ea (25)
˙̂b =

απ

2a
e2

1 + k7eb

˙̂c = k8ec

substituting eqn(17) into eqn(16), then we have

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 − k4e2

α − k5e2
β − k6e2

a − k7e2
b − k8e2

c (26)

which is a negative definite function. Thus by a Lyapunov stability theory [32], the error dynamics (3) is globally
exponentially stable and satisfied for all initial conditionse(0) ∈ R8. Hence, the states of the master and slave systems
are globally and exponentially synchronized. Hence, we obtain the following result.

Theorem 3. The identicaln–scroll Chua’s systems (8) and (9) are globally and exponentially synchronized by using
adaptive parameter update law (27)with the feedback controls (11) and ki , i = 1, 2, 3, ..., 8 are positive constants.

5. Numerical Simulation

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the differential equations(8)
and (9)with the feedback controlsu1, u2 andu3 given by(18). The parameters of the systems (17) and (18) are taken
in the case of chaotic case as

α = 10.814, β = 14.0, a = 1.3, b = 0.11, c= 3, d = 0.

The initial value of the drive system(17) are chosen as

x1(0) = .125, x2(0) = .625, x3(0) = .941

and response system(18)are chosen as

y1(0) = 0.321, y2(0) = 0.487, y3(0) = 0.965

The initial values of the parameter estimates are taken as:

α̂(0) = 2, β̂(0) = 0.3, â(0) = 6, b̂ = 8, ĉ = 10

We take the parameterski = 2, i = 1, 2, 3...., 8 Fig. 2(a), (b)and (c) depicts the synchronization of identical n–scroll
Chua’s circuit (8) and (9).
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Figure 2: (a). Synchronization of n-scroll Chua circuit (b). Error portrait of n-scroll Chua circuit (c). Parameter estimates of ˆα, β̂, â, b̂, ĉ

6. Conclusion

In this paper, adaptive control method has been applied to estimate the fixed but unknown parameter and achieve
global chaos synchronization for a family of n-scroll chaotic Chua circuit. The advantage of this method is a recursive
procedure for synchronizing chaotic system and there is no derivative in controller. The adaptive control design has
been demonstrated to family of n-scroll chaotic Chua circuit. Numerical simulations have been given to illustrate and
validate the effectiveness of the proposed synchronization schemes of the chaotic circuit. The adaptive control design
is very effective and convenient to achieve global chaos synchronization.
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